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SUMMARY

A computation package containing all equations and procedures needed in
designing a high-power multicavity klystron amplifier has been developed.
The rigorously derived three-dimensional relativistic axisymmetric equations
of motion are used to compute the bunched current and the induced RF gap
voltage for all interaction cavities except the input and second cavities,
where the linear space-charge wave theory data are employed in order to
reduce the computation time. Both distance-step and time-step integration
methods are used to compute the Fourier coefficients of both the beam cur-
rent and induced current.

INTRODUCTION

This report describes in detail a design computation package of a mag-
netically focused high-power multicavity klystron amplifier. The theoreti-
cal foundation is based on the investigation of field-electron interactions
of a relativistic klystron described in a previous report (ref. 1). The
computation method is based on the large-signal disk-electron model which
can be programmed and run on a large-capacity high-speed computer. The un-
modulated electron beam which enters the input cavity is divided into a
large number of deformable disks of electrons, and each disk is subdivided
into an equal number of rings of electrons which serve as elementary charges
in the mathematical model. Thirty-two disks per one space-charge wavelength
and three rings per disk were used in the computation model. Each of the
ninety-six rings is followed through from the input cavity gap, to the
intermediate interaction gaps, and to the drift-tube spaces until the output
gap is reached. The induced current and the RF gap voltage of the various
cavities are computed on the basis of the theory of Shockley and Ramo. The
fundamental bunched current and the induced RF gap voltage of the various
cavities are computed, first, by performing the distance-step integration of
the equations of motion to yield the precise data of the position and phase
of the individual rings and second, by evaluating the Fourier coefficients
of the bunched beam current and the induced RF gap voltage by using the
time-step integration method. Beam loading and cavity detuning effects are
appropr1ate1y dealt with. Space-charge force Green functions,
and are modified to take into consideration relativistic veioc1ty
of the Beam motion. Since the RF gap voltage and the beam ]oad1ng parame-
ters, G% and Bb s, are interrelated, an ijteration process is em-
p]oyed 4 determine’the voltage modulation index for the various gaps.
However, in order to reduce the computation time the linear space-charge
wave theory data were used to design the input and second cavities, where
small voltage modulation index values will be used.

Material, not previously published, presented at the International Electron
Devices Meeting sponsored by the Institute of Electrical and Electronic
Engineers, Washington, D.C., October 11, 1971, and the Solar Power Space
System Workshop sponsored by NASA Lyndon B. Johnson Space Center, Houston,
Texas, January 15-18, 1979,



This report consists of three main parts:
(1) A11 input data and initial computation formulas needed to start the

(2)
(3)

computer program

A11 working equations used in various stages of computation

Design procedures described in detail, including the method of
iteration in the computation of the voltage modulation index of the
various gaps

In addition, four appendixes are included at the end of this report so

that the

The
designer:

(1)

(2)
(3)

o

—_
~N O

origin of some of these working equations can be traced and checked.
INPUT DATA
Design Parameters
following are the parameters and data to be specified by the

Klystron operational frequency, fg, in hertz. (This is also the
input drive frequency of the klystron.)

Input drive power, Pip, in watts. (Matched condition is assumed.)
Direct-current beam current, I, in amperes, which is related to

the relativistic perveance K, by the equation

v
3 0
Ky = K ( - 728V q)

where Ko =1 /(V0)3/2 is the nonrelativistic perveance, and
Veq = moC /|e| = 5.11x10% volts is the equivalent beam voltage.
D1rect—current beam voltage, Vg, in volts.
External applied dc magnetic field as measured along the z-axis,
Bp, in weber per meter squared. (1 Wb/m¢ = 10 000 G).
Tunnel diameter, 2a, in meters.
Direct-current beam diameter at the entrance to the input cavity, 2b,
in meters.
Diameter of the cathode, 2rq, in meters.
Physical gap length of the sth cavity, 2%g, in meters, with

=1, 2, ...; that is, for a five-cavity klystron, 287, 22p, 283,
2%, and 2%c.
Drift-tube ?ength Lg, in meters, as measured between the
centers of the sﬁh and the (s = 1) cavities; that is,
L1, L2, L3, Lg, and Lg. It is to be noted that the
drift-tube length may be determined initially by the small-signal
space-charge wave theory data given by

L =M=(2m+1)li
s 4 2 w “n0

where m=20, 1, ... and



u

Ao electronic wavelength, fO
Xsp space-charge wavelength
s e s . 5
Ug relativistic dc beam velocity, 5.93x10 R, ‘/V', m/sec
|e/m
w plasma radian frequency,
PO b uOO
Ru relativistic velocity reduction factor,
v )
Vi (1+Vo_)
eq eq
Ugo nonrelativistic dc beam velocity, 5.93x105 VO, m/sec

1) og = 2nfglup.

2) k = 2nfn/

3) Nonre]a?1v1st1c cyclotron radian frequency, wcQ = (e/mg)Bg

4) Unloaded Q of the sth cavity, Qu, s; that is, Qu,1s Q,2s

Qy,3» Qu,4, and Q5.

(15) External’ Q of the’ sth cavity, Qext ; that is, Qext,1 and
Qext,5 (Qext 2> Qext,3> and Qext % .

(16) Characteristic impedance of the h cav1ty (R/Q)g; that is,.
(R/Q)1, (R/Q)2, (R/Q)3, (R/Q)4, and (R/Q)5.-

(17) Frequency tuning parameter of the sth cavity Su,s =
ftun? fresonant)/fres nants that is, sy 2, 8, 3, and
Gu 4 \¢8 and u,5 =

(18) Field- shape parameter of the sth cavity, Hg; that is, Hi, Hp,
H3, H4, and H5

(19) Number of disks in one space-charge wavelength used in the design

model (here 32), N, and number of rings in each disk (here 3), R.

Physical Constants Used in Computation

The following physical constants (expressed in SI units) are needed in

the computation:

(1) velocity of light, ¢ = 3x108 m/sec

(2) Die]ectrii permittivity of the vacuum, eg = (1/36 r)x1079 =

8.854x1012 F/m

Magnetic permeability of the vacuum, ug = 47x10~7 H/m
Rest mass of the electron, mg = 9.108x10-31 kg
Magnitude of the electronic charge, |e| = 1.602x10-19 ¢
Ratio of electron charge to rest mass, le/mgl| = 1,759x1011 ¢ kg‘1
Equivalent beam voltage, Veq = moc/|e} = 5.11x10° V

P — p—
~oOu b w
Nt et st e s



WORKING EQUATIONS

Normalized Equations of Motion

The normalized axial equation of motion is

H &
S
a. cos e_P -
.. s s 0 sinhfH_a(s_/a) ..[G . G
Es - . [ S S ] (ka)2 ED(FD>+ [(ka)2 €2 _ 1] (F€>
45 (8 a)? ° g
a e
rs 2
2 2 2 V-t —] v
« (“0\ Po 2+ o . o (%) Br re) ©
+W(T Fall- (k) &g+ 20\ 7) 5y (1)
e 0 a
The normalized radial equation of motion is
Hsl
a_. cos 6_P .
S s 0 sinhfH alr_7a)] . G .. (G
.p.S - - [ S S ] [1 _ (ka)2 02] (Fp> _ (ka)2 ok (FE>
et (Bea)2 e g

O

+

e

The independent variables are

2

0
3

o]

2

“p0\ Fo
w Bea

(2

~No
A

[1- (ka)z(;.)2 + éz)] 9; - (ka)2 oE g;}

£, PQ,eq,j> and 0, j» defined as

E normalized axial coordinate, z/a

Pp,.eq,J

normalized equivalent charge center of jth ring charge

element at entrance to input cavity



entry phase of jth disk charge element where j =1, 2, ...,
32 (=NR) in a 32-disk 3-ring model, 2=j/N

0,3
The independent variables are o, ¢, p, and é, defined as
P normalized radial coordinate, r/a

é(E,pO eq j,¢0 j) normalized radial velocity component of jth ring
T ’ charge element, where 8 = wt, do/de

é(E,PO eq,jr®g,j) normalized axial velocity component of ith ring
T charge element, d&/de = z/wa
¢(E,p0,eq,j,¢0,j) phase variable which defines phase position of jth

ring charge element relative to RF gap filed as a
function of displacement and initial state of enter-
ing electron beam, 6 - (Bpa)E

The following are the relationships or equations needed to compute equations
(1) and (2):

(1) Relativity parameter:

P 1 - (ka)® (o% + £°)
0~ ) 2 V-9 2
2 { ¢c0 C
1+ 0.25 (ka)
w ]
a
where
o]
¥ 2n / B(p,2)p do
0
Va tunnel flux, ma? Bo
Ve cathode flux, nr% Bo'
re cathode radius
B,(p,E), Bg(p,e) radial and axial components of dc magnetic fields

given by eqgs. (3) and (4) in the section Calcula-
tion of External Direct-Current Magnetic Fields
Bp and Bg



(2) Four field-shape functions, Fg, F,, Gg, and G,:

Jo[o Vka)® + (H.a) ]
qo[;/(ka)2 + <Hsa)2]

Fe(2,0) = cosh(H az)

@

H ar /a -H ag /a

ALY (a p) s7s s s -p & _/a
E 0 e + € n"s
- e osh
pndl(xn) Ph ~ Hsa Pp ¥ Hsa ¢ (pnIEI)

n=1

for - zsla_i E<2/a

Jl[ + (H a)z]
H J

Fo(Esp) = -Hg sinh(H ac)
+

1 H as /a . H as /a 'pnzs/a .
+
i(x ) - H.a *Ha € sinh(p,1€1)
n=1
for -t /a<t</a
6 (c.0) < anO( ) s1nh(pn + Hsa) T
£’ Ppd1 (xn) p, ¥ (H.a)
n=1
s
sinh(p_ - H_a) == -p. 1&gl %
+ n > 8 e " for =
pn - (Hsa) 1g] > a



@
L

J,(pr.) | sinh(p. + H a) =
1 n n S a
Bpl80) = E 0, P, * (H_a)

n=1
s
sinh(p_ - H.a) = | -p,lEl L
+ n s”/ a n for s
pn — (Hsa) € |E| > a
(3) Two Green function space-charge forces, Qé and gp',:
\ \ . xn|€-£0|R '
- Ja(pr )Jn(par ) 1-(u,./c) £ - &
@' (c.0) = 0"""n"70""0"n" 01 sign 0
1'%n u
N
y (%)
n=1 all EO’QO
\ \ _ *nl55IR
' Yoo Jplerp)dglegry)  F1-(ug,/c)
gp(gap) = 1 - —E'_ 2 e
Jl(xn)
/ _J
n=1 all £0°P0
where Jp and J% are Bessel functions of the first kind, xp 1is the nth
root of the Bessel function,
1 for & > EO
sign & — 50 =
-1 for € <&
0
2
Py = - (ka)?
7




The notation (g - EO) implies that the value inside the parentheses must
R

be computed by using the retarded positions defined by

2 2
d = '/(zb - Za) ¥ (req,b - r‘eq,a)

or

(d/a) = ’/kgb - ga)2 ¥ (peq,b - Qeq,a)2

(see fig. 1); that is. if we wish to calculate the force acting on the

charge located at & at time t (i.e., 6) due to a charge at &g, we
must take the value of charge at time t - |z - zg|/c, or more precisely,
t - d/c, where d 1is given above and ¢ 1is the velocity of light.

Calculation of External Direct-Current Magnetic Fields B, and Bg
With reference to figure 2, we note that the radial and axial compo-

nents of the external dc magnetic field produced by an electromagnet are
given by (appendix A)

Teq,b

%

—— (Zy-zy) —

Figure 1. - Computation of space charge forces between
disks (rings).

Figure 2. - Configuration of close-wound N-layer solenoid,



L
/ Kl(kai)Il(kap)sin(ka&;)s1'n ?%c- ka dk
0

BO(E,P) = Bo o L (3)
. SC
/ Kl(kai)sm-z-a—ka dk
n=1 0
N @
Ky(ka.)I.(ka )sin(ka;)sin-EEE ka dk
1t8d4/ glkae Za
B, (£.0) = B 9 (4)
. °SC
/ Kl(kai)sm Vi ka dk
n=1 0
where Ig, Iy, and Kj are modified Bessel functions of the first
kind: By is the magnetic field along the z-axis; and aj is the mean
radius of the ith layer. It has the following simple relation with the
diameter d of the wire used:
3; = a; * (i - 1)d
where a; is the mean radius of the first layer of the solenoid.
Calculation of Fundamental Bunched Current for Third and Succeeding
Cavities, s = 3, 4, ..., Including Output Cavity
The fundamental beam current when normalized to the dc beam current
Ig is given by (appendix B)
I -Jja
?’s = B+ B e b, s (5)
S S
0
where
NR=96
-2 .
Ks = W z GE,ES CcosS ¢j(p0,eq,¢0,gs) (6)
j=1
NR=96
-2 . .
Es - NR :E; GE,ES sin ¢’.]'(‘)O,eq’d’O’Es) (7)
J:



e e —
t’l“lil‘“lj'l_ i
+2a g ' Ly L3 T Ly

rlzzl z 23 7 L

Figure 3. - Identification of various interaction gaps and drift-tube spaces in
five~cavity klystron.

where the bar over the symbols Ag and Bg indicates they are normal-
ized Fourier coefficients, and

{]. for € =¢_(i.e., z = zs)

S
0 for & 4 £ (i.e., z 4+ Zs)

s =
E,ES

in which &g (i.e., zg) is referred to the midplane of the sth
cavity gap ?f1g 3 with

zS 5 L ]
ES=T=<_+2 Z for i=1, 2, 3, ... (9)

i=1

For example, for the fifth cavity, s = 5 (see fig. 3),
[} L L L

1 1 2 3 4

55=(a—+2>+‘a—+3‘ ey

The equivalent charge center pg . ro,e of the jth ring
charge element is determined by fhe &es1gn data’ sﬁéwn in figures 4 and 5

10



TN RING OF
/ nthpisk
7

rih RING OF .~
nthoisk "z,

Yo

{a) UNMODULATED DISKS BEFORE
ENTERING INPUT CAVITY GAP.

athoisk | ~in+1 DISK

tS
(b) TWO MODULATED DISKS AT

Z=2; AND t =t WRH POSSIBLE
SUBgTANTIAL DEFORMATION.

Figure 4. - Unmodulated and modulated beam disks.

l"o' 3 = bR
70,eq,3 Tf N
10, eq, 2 S
l T0,eq,1
1
AN
Figure 5. - Computation of charge center.
6] [9] 93] ||
51 (8] 92 |
1 ] |7 9 |z
DISK 1 2 3 31 7

Figure 6. ~ ldentification of ring charge element of three-ring 32-disk model.



_"0,eq,1 b R

pO,eq,l - a T a VE
r
_ 0,eq,2 b R
. _'0,eq,3 b R
0,eq,3 a T a
> k] 5
Vs |

In order to facilitate the computation, we introduce the equivalent charge
center with the general index Jj and the index r to designate the ring
of a given disk. Then, for a three-ring model (R = 3), r=1, 2, and 3.
Furthermore, if we introduce a second index d to designate the number of
disks under consideration, with d =1, 2, .... 32 for a 32-disk model, we

can replace the index J in 0, eq. j by

j=3(d-1) +r

for

r =1, 2, and 3(R)

d=1, 2, ..., 32(N)

For example, with reference to figure 6, we note that the 95th ring
charge element (j = 95) is identified as the second ring (r = 2) of the
32nd” disk (d = 32); hence

j=3(32-1)+2=295

On the other hand, since each disk and each ring become distorted and de-

formed after the beam has passed through the input modulation gap, in order
to identify and follow the movement of a given ring charge element the
following equation is used instead:

t

dr
— + —_—
"s,eq,j = "0,eq,] / at 9t
0

or

6

r . .
_Is.eq.j _
Pseq,i= & = P0,eq.i " / ap de (11)
0

12



Calculation of Beam Parameters Gp g and Bp g

The beam conductance Gp g and the beam susceptance Bp ¢ needed
to compute the gap voltage modulation index ag are determ1ne8 by

(appendix B)

G
0 2 . =52
Gb,s == }’AS + B cos x (12)
G
0 = .
Bb,s = — yizs + st sin x, (13)

s
where
G = 0
0"V
US FS
x = arctan(2Q s } + arctan — - arctan — (14)
S T,sT,s =
t'r's As

with Ag and Bg given by equations (6) and (7), Cs and Dg given by
equations (16) in the next section, and o« given by equations (18) in
the section following that.

Calculation of Induced Current I g

The normalized fundamental induced current is given by (appendix C)

i.s — -8y (15)
1 - CE * Ds e

where Tg and Dg are the normalized Fourier coefficients given by

M=36 NR=96
(Cs>._ —-2n Ha
= ]= E E Sg.¢ E
Ds/  MNR sinh Ha —— k
all k
. Fp . i Fe cos ¢m(po,eq,j’¢0;peq,j’gk’¢s) (16)
Pile I\G sin ¢ ( . £,,6.)
b £ m'P0,eq,j>*0°Peq, > k> %s

13



and

with
1 for k£ = Ek
Sgg, =
"7k 0 for £ * Ek

*s *s
(2 cnen (329

It is to be noted that (1) the two equivalent charge centers PO, eq, j

and are determined in accordance with rules detailed in’thé"sec-
tion Ca?cu%at1on of Fundamental Bunched Current for Third and Succeeding
Cavities, s = 3, 4, ..., Including Output Cavity and (2) the two normalized
velocity components bj and &j are to be computed as functions of

° £
. = . (pO,eq,j’¢0’pk,eq,j’gk’¢s)
Ej Ej

Determination of Voltage Modulation Index ag

The gap voltage modulation index for the sth cavity is given by
(appendix D)

_ 9-S| _ R S S
ag =y = 6ly s <Q>s 5 (18a)

'/i * 4Q$ 81,5

jes
Vg,s = Voas e (18b)
where
. _ 10
0 VO

14



1 (19)

u,s ext,s
B
b,s (R
$1.s = Su,s Y (ﬁ)s (20)
s
o, = -arctan(ZQT,ssT,s) - arctan E;— (21)

S

and Cq and Dg are given by equations (16); Gp, s and B are
given by equations (12) and (13); and Qu,s> Qext,sa and (R/Qis are
design parameters.

COMPUTATION
Input Cavity, s =1
Step 1: Perform the following computations:

(1) Compute the voltage modulation index a1 by the relation

. = 2Rsn,lpin
1 Vo

20y 1 (R7Q)4P 4
Y i (22)

where Pj;, is the input power to the first cavity. Assuming that the
input cavity presents a perfect match to the signal generator, we note that,

since Qipad = Qext,1-

1
S T B
QU,l bal (Q 1

If the beam loading effect is neglected, QT,l = Qu,l'

(22a)

(2) Compute the axial and radial beam coupling coefficients by using
small-signal space-charge theory data given in the following:

sin e
g,1

Mz,l =7 e

(23)
g,1

15



where 6g,1 is the gap half-transit angle defined by

3
1
9,1 = B2 T

¥ 15(v5) - 13 (vb)
rl = I;(va) (24)

M

in which Ig and Iy are the modified Bessel functions of the first
kind, and

with

(25)

Step 2: Use the voltage modulation index aj] obtained in step 1 to
set up the velocity modulation of the beam, and by integrating the equa-
tions of motion (eqs. (1) and (2)) compute the bunched current at the second
cavity gap. The initial conditions for the electrons are

Z = zO =0
"= 70,eq,]
or
£ =0
for & = 60
P = P0,eq,]
and
u, = Y
for t = to
U, = 0

16



or

Second Cavity, s = 2

Step 1: Compute the fundamental beam current Iy,2 by using for-
mulas derived from the linear space-charge wave theory. This is given by

(ref. 2)

.2 oy |21 e sin(iclL> o2 (26)
'_ﬁ;_ 1 RriRr + 1) ug Ug 1

where

Ji1 Bessel function of first kind

a] given by eq. (22)

Mz.1 given by eq. (23)

Me.1 given by eq. (24)

Rp given by eq. (25)

Ap,? -(8ga)(Ly/a)

L1 length of drift tube between first and second cavities (see fig. 3)

wg reduced plasma frequency, Fmp

wp plasma frequency

F space charge reduction factor (determined from relation between

Beb and a/b)

(For cylindrical beams in cylindrical tunnels, data on F can be found in
ref. 2, fig. 3, p. 106, for instance.)

Step 2: Compute the induced current 1I; o and induced voltage
Vg,2 and hence obtain the gap voltage modulation index aj.

(1) The induced current (fundamental) is computed by small-signal
theory formulas:

ia.
e 12 (27)

17



where

M 992
2,2 99’2
in which
%
2
eg,2 = Bed T
By equation (25), My » can be obtained:
L
2
bi2 = bp2= Pt T

(2) The fundamental induced gap voltage is given by equation (D6a)
(appendix D); that is,

R
|Ii,2|QT,2<6>2 je,
9.2 = e (28a)
> 2 2
Vi N7 ,2%7,2
where
6, = Ai,2 - arctan(ZQT,st,z)
= by o - arctan(ZQT’st,z) (28b)
Q = 1 (28c)
T2T T . (R)
Q2 0:2\T,
B
b,2 (R
5T,2 = Gu,2 * = <6>2 (28d)
I G
b,2
Gb,2 = T, E% cos[arctan(ZQT,zaT,z)]
I G
AR Ev=— (256
2% 4 o871

18



B8 = Ib’2 GO sin[arctan{2Q; ,6+ ,)]
b2 = | Ty | =, T,257,2
o2 | % %0r,2%,2 (28f)
1T @,
o |2 7
25 407 287 5
and
Iy
6y = 7>
0

Hence the gap voltage modulation index ap is

v I Qr .2 %
IVq,2l i,2 , 2 2

yi+ 40%,2“%,2

We notice that ap is a function of the beam loading parameters Gp o

and Bb o which are, in turn, a function of the gap voltage. Hence, to
compute’ an, we require an 1terat1ve process. This is described in detail
in the following:

(a) Initially, we find a by computing Q and 8T,2 by using
2 71,2
data of G » and By p derived from small- signal theory:

G, sin o sin @
0 g,2 g,2
Gb,2 =- 7 3 ( eg > ~ CO0S eg,%)

g,2 ,
Go
= - §—‘MZ,2(MZ’2 - cos 69,2) (30)
G0 cos 8 2
Bb,z = -5 -——ag—g—— (Mz,2 - cos eg,z) (31)

The value obtained from equation (29) is given the name ap(q), where the
subscript (0) denotes the initial data for ap. In this manipulation, the
values of Qr » and &1 p obtained will be assigned the names Qr 2(q)
and 87 2(p)- respectively. ’

(b) In the next step, the values of « , Q , and & are
used to compute Gp » and By 5 from the gg%e—sxg%gq)equat1on£ %ég)

and (28f), respectiVely. The data so obtained are given the name Gy 2(1)
and Bp 2(1), where the subscr1pt (1) denotes the first 1terat1on daté
These new data of Gp { g and &1 are used to compute

and s ,2(1 from equa ns 28c 228d), respectively, and hén e, to
obtawn a new gap modulation 1ndex, ca]]ed a2(1)-

19



(c) After the first iteration process, we obtain an RF gap voltage
Vg,2(1) given by

= Vaao (1) e (323)

where

®2(1) = Bp,2 - arCta"[ZQT,Z(l)GT,Z(l)] (32b)

and this is to be compared with V 2£0), which is defined in accordance
with data obtained from the initia?’1 eration process (a); that is,

= V,a (0) e (33&)

where

92(0) =8y 5 - arCtan[ZQT,Z(O)GT,Z(O)] (33b)

In order to compare two complex voltages, we must compare their magnitudes
and phases separately as follows: :

[%2(1) = “2¢0)] £ ©1

and

1°2(1) = ®2(0)] < =2

where €1 and ey are two small specified values. If both of these
inequality conditions are satisfied, we go to design step 3; otherwise we
repeat procedures (a) and (b). This time the iteration process is initiated
by using ap 1% obtained in (b), and after the process has been repeated

n times, finally the following inequality conditions are simultaneously

satisfied:

[92(n) = %2(n-1)| < &1

and

|A

|®2(n) ~ ®2(n-1)] £ =2

Then, ap(p) is the finalized value for ap. The word "simultaneously"
requires an explanation. It simply means that both inequality conditions
must be satified at the same time.

20



Step 3: The finalized value of ay g) described previously
is used to set up the velocity modu]at1on for gap Thus the distance-step
integration of the equations of motion is cont1nued through the second
drift-tube space L2 wuntil the third cavity gap is reached.

Third Cavity, s = 3

Step 1: Compute the Fourier coefficients A3, B3, and C3, D3 of
the fundamental beam current I 3 and the fundamental induced current
14,3, respectively. The relevant equations to be used are (5) to (8) for
Ib 3 and (15) to (17) for I 3. It is to be noted that the two veloc-
ity components, o; and &;, and the phase factors, ¢; and ¢g5, are
determined by the"distance-step integration of the equations of motion ini-
tiated in step 3 of the last section.

Step 2: The Fourier coefficients A3, By and C3, D3, obtained in
step T are used to compute the gap voitage modulation Index a3 by using
equation (18a). However, we note that a3, like ap, is a function of
the beam loading parameters G and B . which are, in turn, a
function of the RF gap voltage 9 Therefore az can only be deter-
mined by means of an iterative process very similar to that described in the
last section. Initially, the small-signal beam loading parameters, given by
equations (30) and (31), are used to compute Qt ,3(0) and sy 3( ) by
using equations (19) and (20), where Q ext,3 == and &, 3 18 a design
parameter. It is to be noted that, when edquations (30) and (31) are used to
compute G ] and Bp 3 (0) the gap transit angle 64 should be computed
by using tRé half- gap length "e3. In the next step, the’values of aj
QT. , and st 2 obtained above together with the four Fourier coe}f1—
cients obta1ned 1n step 1 are used to compute the beam loading parameters
Gb 3(1). and Bp ,3(1)> by using equations (12) and (13) in this instance;

glz is computed from equations (18) to (20). The iteration process
de ibed in the last section is followed through until a finalized value

@3(n) s obtained.

Step 3: Here, again, the finalized o3 (= a3g value is used
to set up the velocity modulation for gap 3, and the'distance-step integra-
tion of the equations of motion is continued through the third drift-tube
space L3 until the fourth cavity gap is reached.

Fourth Cavity, s = 4

Computations needed to design the fourth cavity follow exactly the same
procedures described in the last section; however, great care must be exer-
cised in choosing the appropriate design parameters for the various for-
mulas. For instance, in computing the smali-signal theory beam loading in
the initial interation process, &g should be used to compute the half-
gap transit angle ﬁ etc.

e

The design of the fifth and sixth (if any) cavities follows in like
manner.
Qutput Cavity

Step 1: Set the index s 1in various formulas in cavity 2 to its
appropriate value; that is, for a five-cavity klystron, set s equal to 5.
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Step 2: Compute the RF gap voltage Vq,s from equation (18b), where
the voTtage modulation index for the output”Cavity ag s obtained from
an iterative process described in the sections Third Cavity, s = 3 and
Fourth Cavity, s = 4. However, since the output cavity is coupled to an
external matached load, some appropriate value (a design value) must be
assigned to Qext,s Wwhen computing Qr g from equation (19). More-
over, since the output cavity is tuned to the input driving frequency,
§y,s can be set equal to zero when computing 8T, s from equation (20).

Step 3: The following additional computations are needed to complete
the design of the output cavity:

(1) The fundamental conversion beam power, that is, the fundamental
power taken from the beam by the output cavity, is given by

1 *
Peonv = (2) Re Lind,sYq,out

R =2 , =2
QT,s (6)5 (Cs * Ds)

= cosfarctan(2Q _s+ .)
2(1 + I s) L 5075 ]

This is maximum when cos[arctan(ZQT ST S)] is equal unity, that is,
when the following condition is satidfie

arctan(ZQT <57 S) = 2wk for k=0,1, 2,

(2) The conversion efficiency nconys Or the electronic efficiency
ne, 1S given by

_ Peonv

n ='n =
conv e IOVO

(3) The actual power delivered to the external matched load G| s
given by

1 *
Pout =\2) Re Vg,sI1oad

1 2
- (7) Gleg,sl
Vga

g0

Fon I 7, BN Y

ext,s
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(4) The power gain of the klystron is defined by

power gain =5
in

(5) If P1oss.s 1is the heat dissipated in the output cavity wall,
the output circu1t’efficiency is given by

-1 power dissipated in cavity
fcct = © T 7 power supplied by beam

where power dissipated in the cavity is computed by

2
P = |v9’5| - P EEEELE
loss,s ZRsh,s out Qu,s

and Rgp g 1s the shunt resistance due to wall and output coupling losses

alone.

(6) If P.o1 1s the power recovered in the depressed collector,

Pout Pout

net ~ beam power - Pco1 - IOV0 - PC

n
ol
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APPENDIX A
DERIVATION OF EQUATIONS FOR CALCULATION OF Bp(r,z) AND By(r,z)
OF DIRECT-CURRENT MAGNETIC FIELD

With reference to figure 2, we note that the vector potential A(r,z)
due to a single-layer close-wound solenoid of radius aj and length
Lee 15 given by (ref. 3)

® L
Ae(r,z) =C “//P Kl(xai)Il(Ar)cos Az sin (—§E> x-%l
0

where 17 and K; are modified Bessel functions of the first and
second kind, respectively. The required magnetic field B 1is obtained by

taking curl of R to obtain

- - 3 1 51
B(r,z) = v x A = a, [_'F %E (rAe) *a,w %? (rAe{] (A1)
This gives
aA
]
Br(r,z) = - 55
) Lse
=C Kl(xai)Il(Ar)sin Az sin|—— ] da (A2)
0
and
A 3A
0 )
Br(rsz) = - 'F- + ﬁ‘—
- Lsc
=C Kl(xai)IO(Ar)cos Az sin — ) A da (A3)

0
In order to evaluate the constant C, we require that
BZ(O,O) = B0 for r=0 and z=20

where By is the dc magnetic field along the z-axis, a design parameter.
Thus, by letting r = 0 and z = 0, we have from equation (A3)
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B
C = 0 (Ad)

L
/ Kl(xai)sin<—§—c-> A da

0

When the value of C s substituted into equations (A2) and (A3), we get

@®

L
B0 / Kl(xai)Il(xap)sin(xag)sin(—;9—)xdx

B (ps&) = 0 (A5)

©

° L
. SC
/ Kl(xai)s1n(~—2—-)k da
0

and

[

. . [ tsc
B0 Kl(Aai)IO(Aap)S1n(AaE)Sln ——) A da
By (p.8) = 0 (A6)

L
. sC
/ Kl(la_i)STYT(*Z—-)X da
0

Equations (A5) and (A6) give us the radial and axial components of the dc

magnetic field due to a close-wound single-layer solenoid. If the solenoid
consists of N Tlayers, the total magnetic field generated by this electro-
magnet is obtained by summing all contributions of the N Tlayers; that is,

) Lsc
Kl(Aai)Il(xap)sin(xaz)sin ——/ A da

B (p,E) = By — (A7)

) K,{ra;)sin Esc A da
1 i 2
0
) LSC
Kl(Aai)IO(Aap)sin(AaE)Sin —= | * da

By (0.E) = By —2 (A8)

N

=

® L
/ Kl(xai)sin(—zs—c-) A da
0
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where

Io

order, I

the

secondtk1nd, respectively, of the first order, and
i

is the modified Bessel function of the first kind of the zero
and K1 are the modified Bessel function of the first and

aj 1is the radius of

layer of the solenoid, with i=1, 2, ..., N.



APPENDIX B
DERIVATION OF EQUATIONS FOR CALCULATION OF BUNCHED
CURRENT AND BEAM LOADING
The computation of the bunched current is based on the charge conserva-
tion principle. If the beam is divided into a number of disks of electrons

and each disk is fur%ger divided énto e]gmentary charge rings (figs. 6 and

7), an elementary j ring w(r§. g - r1,0)Azo containing a charge Aqg

at time tp at a later time t bécomes aq 1in an element of the charge
ring AS Az. Thus, by the charge conservation principle, we obtain

Aqo(r0a209t0) = AQ(r,Zst)

or, more precisely,

2 2
pO(T0,0 - ri,0>jAZO = pj(r,Z,t)ASj AZ (B1)

Since the rings are deformed and are permitted to change their axial and
radial dimensions as well as their shape according to the total force acting
on them, the right side of (Bl) is employed to account for this fact; aS;

is the surface element of the jth ring at time t. Equation (Bl) can be

written as
™ (Y‘z - Y‘Z >
0.0 i,0 j Az

p-(r,Z,t) = po(roszo~to) Asj AZ

J
g (Y‘Z - Y‘2 >
0,0 - 1,0 j A¢O

20{ 020 o) 0,722, E)8S; &

= -J

—— Uzo

Figure 7. - Computation of charge conservation in deformed disks
(rings).
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where Az = u, at, aé = w at, and aJyz9 = -pQuzg. The density of the
current carried by the charge element AQ; at time t and some distance

z from zg 1is given by
uj(r,z,t)

Aj,j(r,z,t) pj(r,zat)

3, a
pj(r,z,t)uz(r,z,t)aZ oj(r,z,t)ur(r,z,t)ar

and the axial and radial components of the current density are given by

8d,5(r,z,t) = py(r,z,t)u 5(r,2,t)

= =J,0{rp:2ptp) 25 29 (B3)
and
2 2
"(fo,o - ”1.o>j ups(raz,t) aeg
ady5(raz.t) = =J,4(rp. 25, tp) 55, 0, {726 56 (84)
respectively.

Assuming that there is no net current flow in the radial direction, we
obtain the total current passing through a given plane perpendicular to the
beam at an arbitrary distance z and the time t by summing all contribu-
tions from the charge elements that pass through this plane simultaneously
at the time t. Hence

Jj=NR
i (zg.t) = :E: 8, 4(rszg,t)as;
j=1
J=NR
2 2\ _%%(rg-Zp-t)
= ~1d_n(rnsZastna) ) (r - r ) - (B5)
z0*'0°70* "0 2,2, 0,0 i,0 j A¢(r0,to,zs,ts)
j=1
where S, 5 is the Kronecker delta notation defined by
*“s
Gz,zs =1 for z= z,
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5 =0 for z ¢+ z

z
Z,2¢ S

and s 1is designated for the number of the cavity gap concerned. The sum-
mation process requires further explanation. Since in a high-density modu-
Tated electron beam each disk of electrons is deformed and distorted in
shape, only a portion of the charge may cross a given cross-sectional plane
at a given time; and at a given time, charges belonging to different disks
may cross a given cross-sectional plane simultaneously. Only the ring
charges whose arrival time at z = zg coincides will contribute to the

bunched beam current. . )
In the next step, we expand the bunched current, equation (BS5), in

terms of Fourier series as follows:

@

1b(zs,ts) = A0 + :E; (An cos n¢ + Bn sin n¢)
N=

where

1 2n '
A0 = 5= ’/0' 1b(zs,ts) de

This can be evaluated by using equation (B5) for ip(zg,tg) to obtain

1 2 2
Ao = (’z) J20(g: %o+ to) 5z,zs("o,o - "1,0). dog(rg-zg-tg)  (B6)

and in 1ike manner,
A, 1 2 cos né
== 1b(zs,ts) _ de
Bn 0 sin né
2

i
( ) NR 5 2 ) cos né ( |
-dJ raaZaat :z: 8 (r - r; dén(rn,za,t
z00'0°°0° "0 ] z,z 0,0 i,0 5 \sin ne 007070
0 =

(B7)

Further evaluation of the coefficients Ag, A,, and Bp requires some
thought. Let us consider the simpler case of the evaluation of Ag first.
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With reference to figure 6, we see that since by our choice each charge disk
which enters the input cavity gap at equal time intervals is unmodulated,
all the rings in a given disk will enter the input cavity gap simultaneously
at a given time. Thus, if we use a double subscript to identify each of the
NR charge rings instead of using a single index Jj, we can write equation
(B6) as follows:

N R

1 : :
Ap = '(7) J,0{rgs2g> o) Z E Z (rOsO,Y‘ B r."’O’r)n **0

all A¢0 n=1 r=1

where the subscript r designates the ring of the disk, and the subscript
n designates the disk number. With this new convention, we can represent
aég by 2x/N; hence

where

is obviously the square of the beam radius b. This is the correct result
for the coefficient Ag. The evaluation of the coefficients A, and B

is not as simple since we are dealing with multiple value functions in tne
bunched beam. 1In this case, a single index representation may be least con-
fusing. Thus, we shall represent a¢g by (2n/NR). Using this conven-
tion, we may write equation (B7) as

NR
A COS né .
n 2w 2 2 J
= - 2= J_A(ra,Zn.ts) E (5 r -r ) (B9)
<B > NR “z0'' 070" "0 z,z, 0,0 i,0 5\ sin ”¢j

n -1

(rg.tpir,zc,te) is a function of the radial position of the
0-*0 52 -5

where ¢
crossing the constant 2o plane at time tg, and hence,

E¢J'
charge ring oh
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it is to be determined by its radial position at the entrance rg and its
entering time tg. In computer programming, it is more convenient to
identify an individual ring by its equivalent charge center rgq or

ro finstead of its two radii, the outer radius rp and the innér radius
r;. Using this convention, we write equation (B9) as

NR
<An> 21O . (r2 cos n¢j(r0,t0;r‘,r,zs,ts)
=72 E . 2,2 0,eq,J . . (B10a)
Bn b"NR P S sin n¢j(r0,t0,r,zs,ts)

where Ig = wb2J,9 s the dc beam current. In the expression for the
equivalent charge center rg oq 3, the subscript 0 is referred to the
unmodulated beam at the entrancé”to the input cavity gap. It is to be noted
that, if each ring of the disks is divided into R rings, then, in accord-
ance with the double index notation described previously, we have the
following relation:

r =Y = ,.. =71
anqsr n=1 anan n___2 Oseq9r n=N

for =1, 2, ..., R.
The equivalent charge centers for the case of R = 3 are computed by
the following formulas as shown in figure 5:

rO,l =b% r0,2=% r0,3= bR A
3
L (B10Ob)
; _BR _bR _ bR
0,eq,1 ~ VE 0,eq,2 ~ N 0,eq,3 ~ '/5
[

-~

In dealing with the beam loading problems, we require a complex ex-
pression for the beam current, and furthermore, our main concern is the
fundamental beam current. Thus, by letting n =1 in the Fourier series
expansion formula, we obtain

1b(zs,ts) = A0 + A1 cos ¢ + B1 sin ¢

2 . 2\1/2
Ag * (Al + Bl) cos(¢ - Ab) (Blla)

By
Ab = arctan KI

with
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and the fundamental beam current ipi(zg,tg) given by

' 2 2\1/2
1b1(zs,ts) = (51 + Bl) cos(¢ .~ Ab)

Re T, exp(je) (B11b)

where

Tbl = '/Alz + 312 exp(-ja,) (Bllc)

is the required complex beam current expression.

Finally it is convenient to normalize the complex beam current to the
dc beam current Ip. When this is done, we have the normalized beam cur-
rent in complex form:

- T -Ja
_ bl — = b
Ibl = T(—)—: Al + Bl e (BlZa)
where
_ NR
<A1>—— 2 Z § ("2 ) - ¢j(r0’t0;r’zs’ts) (B12b)
= | 2 z,2z 0,eq,j . .
B1 b"NR o S sin ¢j(r0,t0,r,zs,ts)
and
By
A = arctan| — (Bl2c)
Ay

With the beam current determined, the beam loading effect can now be
determined by computing the beam admittance Yy as follows:

—tl
(2]

———> -J(eta;)
1 ;Q Af + Bf e b (B13)

Yy

<1

where
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Ip1 complex beam current given by eq. (Bllc)

Vg complex gap voltage given by eq. (D6a)
Gy dc beam conductance, 10/VO
a gap voltage modulation index, |Vg,/VO
A1.B1 normalized Fourier coefficients, given by eq. (B12b)
Ap phase factor of complex beam current, arctan(Bj/A1), given by
eq. (Bl2c)
8 phase factor of induced gap voltage, arctan(Dj/C1) - arctan(2QysT),

given by eq. (D6b)

Finally the beam conductance Gp and beam susceptance Bp can now be
obtained by taking the real and imaginary part of Yp to yield

G
= Re Yy =(a_0.> '/Kzl + Ezl cos(e + a,) (B14)

o
o
|

and

=)
o
|

G
- I Y, =(a—°> AL+ By sin(-e - ay) (B15)
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APPENDIX C
DERIVATION OF EQUATIONS FOR CALCULATION OF INDUCED CURRENT

The calculation of the induced current is based on the general formula-
tion, equation (37), derived in a previous report (ref. 1)

_ . . This is re-
written in the following manner:
Egct J
i, (z,t) = E p.Us = ——22 At (C1)
ind Jjd Vind J
all j

where
pj(r,z,t) charge density of jth charge element

U&(ro,zo;r,z,t) vector velocity of jth charge element, which is
function of entrance variables r and tg, as

well as its position (r,z) inside interaction gap
at time t

Ekctqj(ro,to;r,z,t) electric field 1nduced in cavity by motion of charge

element agqg; Pj At .} inside interaction region,
which is de€1ned (f1g 8) as linear (extended) gap
distance from zg - (1 + 2a) to z¢ *+ (1 + 2a),

where z¢ 1is referred to midplane of cavity gap,
sth cavity

Vind induced voltage across cavity gap

The induced voltage Vipq 1is related to the cavity induced electric field
amplitude Eqp by the following relation (see eq. (13)) of refs. 4 and 5):

H|V1nd sI

f0 = Tz sinh FET (€2)
where |Vipq s| is the induced gap voltage of the sth cavity, and H

is the field>shape parameter. For a uniform field, H = 0. By the charge
conservation principle, we can relate the charge e1ement AGj in any

L

J

HIRILL
T
L
i
b i

L

le— 2a 2L 22 —»

z

S
Figure 8. - Extended interaction gap configuration of the sth cavity showing three
deformed disk charges at various positions inside the gap at time t = .
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arbitrary interaction gap, the sth  cavity gap, to the charge element
Aqj (=pg atj) at the entrance of the input cavity, where the beam is
unmodu]ated and has a constant charge density pg. This, in turn, can be

expressed as follows:
1
- Q __ 0 _
8%, =~ NR = ~ WR¥ = 293
where 1 is the dc beam current, f 1is the frequency of the klystron,

and N and R are the total number of disks and rings used in the computer
model. With this transformation, equation (Cl) can be written as follows:

NR —-
I E (rn,tasr,z,t)
. _ 0 —- . . ¢cct,ijt' 0°°0
11nd(z’t) = - NRT E uj(ro,to,r,z,t) Vind
3=1
where
z. - (2 +23)<z<z + (2 + 2a)

S S

This can be conveniently expressed by using Kronecker delita notation defined
by
1 for z=2
%2,2, =
*7k 0 for z + z)
where zx is defined by

z. - (v + 2a) < 7 <z, * (2 + 2a)

Thus

cct J(r t,;r,z,t)
1nd(t) = NRT 5, 2, :§E: u. (r t;r,z,t) ° 1n (€C3)

all k

Expressed in terms of its Fourier components, equation (C3) can be expanded
as

o

(z,5t) = Cq * :E: (C, cos ne + D sin ne) (C4)
n=1

i.
ind
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and, in particular, the fundamental component of the induced current,
Tind,1 is given by

iind,l = "C% + D% cos(¢ - Ai)
V2 385 je
Re C1 + D1 e e

_ 7 Je
= Re Iind,l e (C5)

where find,l is the complex expression for the induced current and is
given by

~ 2 “jA1
Iind,l = "CE + D1 e (C6a)

D
-11 1
A'i = tan (C—l-) (C6b)

in which C1 and Dj are the Fourier coefficients given by

Cy 2 . cos ¢
N Hng,1 (2ot de
- e,z t) ¢ cct J(rO’ O’r’zkt)
Z Z *2,2, Z k Vind

U all k
cos ¢
x( _ m)a¢m
sin ¢m

and

=
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N 021r
- NR?
m=1

NR -

E (r srizt) fect, J( for o )
0 0 V1'nd

j=1

cos ¢
X ( “‘> (C6c)
sin ¢m _

In this equation, a¢p has been replaced by (2n/M) and M is taken to
be 36. Usually the fundamental induced current is normalized in terms of
the dc beam current Ig: then

all Zk

I. ~JjA.
- ind,1 = =2 i
Lind.1 I,~ ~ Cp Dy e (C7a)
where
ﬁ.
A. = tan_l<—l> (C7b)
1 T _
1
and
¢
T, =1 (C7c)
0
By
D, = — (C7d)
1 I0

Finally the dot product inside the bracket can be expressed in terms of
its two scalar components in the form

E E
r z
= Uyt Uy

-
u »

<y

Using equation (C2), we obtain

—

T . Ecct,j _ fHam ;_ Fp + é FE
J Vind 2 sinh (He) | ¥j Gp J G;
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By substituting this relation into equation (Cé6c), we get

M=36 NR=(32)
D, " MNR sinh Ha — °2,2,
all k
Fa - Fe
o pj(rst;razkat) + G g (rostosr z t)
g
p
cos ¢ (ra,tair,z,,t)
X(' m\T0s Y03 "> 2 ) (c8)
sin ¢m(r0,t0;r,zk,t)
where
. u_ .
_
pj T aw
and
. u_ .
25
é;J'_ aw

are the normalized velocity components in the radial and axial directions,
respectively. They are functions of both the entrance position and phase as
well as the position at the interaction gap and the time.
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APPENDIX D
DERIVATION OF EQUATIONS FOR DETERMINATION
OF VOLTAGE MODULATION INDEX «

With reference to figure 9 and reference 6, we see that the input
admittance of an arbitrary cavity is given by

Vin= 6L * 6 * 6+ JuC + s+ 3By (D1)
where
L cavity equivalent inductance
C cavity equivalent capacitance
Gc cavity conductance representing losses in a cold cavity, 1/Rg
G equivalent load conductance as seen by cavity output window (perfect
matched condition assumed), 1/R_
Yb beam admittance, Gp *+ jBp
Gp beam conductance, Re Yy
Bp beam susceptance, Im Yp

If we designate Gy = G¢ + Gy + G as the total shunt conductance of the
cavity, then, in the vicinity of resonance, when the cavity is tuned to the
higher- side of the resonant frequency fg, by replacing w = wg * Aw, we
can write equation (Dl) as follows:

-1
. . . .1 Aw
Yin = GT + JBb + JwOC + jAaw C - ZTE'(I + ;—)
0 0
. . 2 Aw
i
i Yb-! ! |
Yy —— | 6.S ¢ 6V,
in ; (;t; i Cﬁ’ [ Lg ‘,GL g
Cod
[}
BEAM END CAVITY LOAD END

Figure 9. - Generalized cavity equivalent circuit.
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To obtain equation (D2a), we used the following relations:

Furthermore, by denoting

and

o
u
o'

we can write equation (D2a) as

Yi, = Gy [1 + j2q; (su + % B, %)] (D2b)

where Q1 is the total or overall cavity Q defined by the following
relation:

1 1 1 1
= wlGr = 7— + =+ = (D3)
O~ TR, %, O
where
Qy Q of the cavity that would result if the cavity were cold (i.e., in
the absence of the beam) and no external Toad were coupled to it,
Re/wgl, with G. or R representing losses in the cavity
Qe Q that would result if the cavity were loss free and only loading by

the external Toad were present, R_/wpl
Qp Q of the cavity due to beam loading alone, 1/wglGp = 1/GH(R/Q)
Next let us introduce the new parameter st defined by

foo = f
S +(%_) B, (g_)= ( dr‘1v$ res) (Dda)

res
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where & is the cavity frequency-detuning parameter in the absence of
the beam, and (1/2)By(R/Q) is the cavity frequency-detuning parameter due
to the contribution of the beam susceptance Bp. In terms of this new
frequency-detuning parameter &y, we write equation (D2b) as follows:

Yin(w) GT(l + jZQTGT)

-6 P1+ (2076,)% arctan ' (20;87) ~ (Dab)

With the input admittance of the cavity determined, the RF gap voltage
can be found as follows:

N I
U () = g0l (D5)
m

where T;,4.1 15 the cavity induced current (fundamental) given by equa-
tion (C6a9,’and Yin(w) is the input admittance of the cavity given by
equation (D4b). When these relations are substituted into equation (D5), we
get the complex gap voltage

2 . 2

- pci+0D

v, - 17"
l/l + (ZQTGT)2

where we have replaced Ry (= 1/Gy) by (R/Q)Qy, and the phase angle of
the voltage is given by

D
0 = —tan_1 (C%) - tan—l(ZQTaT) (D6b)

QT arctan e (D6a)

oo

Ci and Dj are given by equation (C6c), and Qr and &7 are given by
equation (D3) and (D4a), respectively.

Finally the voltage modulation index o« can be obtained by taking the
modulus of Vg divided by the dc beam voltage Vg to yield

gl o n YO0

@ = 7 = Gl g
0 7
Y1+ (2078p)

where Gg = Ig/Vg is the dc beam conductance, and C3; and D are
the normalized Fourier coefficients given by equation (C7).

(D7)
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